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Representation of side-channel information:
univariate vs. multivariate approach
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= Most powerful adversary:
1. Take allrelevant samples
2. and build anultivariate statistical model
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Example: template attacks
[Chari et al., 2002]

* K power traces ‘-
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time index

e Multivariate Gaussian noise model

_ _ 1 1 T a1
P(tlsy) = N (t1m, §) = o7 exp{—i(t —m)Ts 1t — m)}

e Attack on new device

S = argmaz P(thew|sr)P(sg)
k
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Profiling phase
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Attack phase
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S = argmax P(sMObservatians}
Sk
Challenge: break a cipher using 1 single trace!
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Open issues

1. How to select the relevant samples?

= Look for the largest differences between the mean
traces]Chari et al. 2002Rechberger et al. 2004]

= Look for the largest cumulative differences.
= Look for the samples with maximal variance.

2. How to select window size?
= Clock cycle?

3. How many samples are needed to attack?
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A trace ~ 10° samples

* Prohibitive memory usage!
e Automated way to reduce trace’s size?

Hypothesis:

Information relies on amplitude of
leakage signal (e.g. HW, HD models)

=» Focus on instants where signal variability is
maximal!

=» 1 candidate: Principal Component Analysis
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Principal Component Analysis

top 1. Rotate axes.
Al
’ 2. Discard irrelevant
2 dimensions.
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Find subspace that preserves maximal data
variance!
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Ordinary PCA

e Rotation matrix

1 K
— Compute sample mean ™m = K, Z
and covariance matrix ;
! T
— Diagonalize sample S T K z_: (£, —m) (), —m)

covariance matrix

(by eigendecomposition) SV = VA
where VIV =1Ig

o Kee eigenve@s correspondincpd  larges
eigenvalue Principal directions

Variance in each direction
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PCA in high dimensional data
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e Practical limitations of
PCA:

— The complexity of an
eigendecomposition B(N?3)

— K<< N
e How to flnd the K 1 first principal directions?
— Eigendecomposition (%TCTTC) U=UA T.eR"N
— Covariance matrix (%TJZ)
— Left-multiplying by T. givess (T.U) = (T.U) A
— Eigenvectors normalizeiv = %(TCU) AL/2
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Principal Subspace Template
Attacks

o Keep principal directions: M eigenvectors

1 1/2
Viy= \/—? (TcUle) A1:/M

e Parameters of multivariate Gaussian noise model:
P (V{tlse) =N (VIatg. Sp)

where u, = V{my
X = V—lr:MSkvle

e Attack Iin subspace:

5 = arggnaatP (V_lr:Mtnew|sk) P(sy)
k
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Results on RC4: ATmega88
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Linear transformation in each
direction = weighted sum

Power trace L

First eigen vector

Power trace
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Classification of 10 keys
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1st and 2nd directions 2nd and 3rd directions

Classification rate: 99 % with 3 components
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Results on AES Rijndael

 FPGA implementation on Spartan
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Each key candidate = #paths
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More directions needed
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Classification rate

150
i o0
1a
a0

Mumber of componenis t o

20 components and 128 encrypted messages:
86.7% on average
(vs. Previous attack’s results: 500 -> 2000 encr. mess.)

Mumber of messages
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Conclusions

« PCA-based TA =» principled approach for TA

* Relevant info =» in a very few features
(compression) automatically selected

« Maximal variance criterion =» Starting
hypothesis

o Succesfully applied to RC4 and AES

e Future work:

— Optimal number of components and encrypted
messages Iin case of the AES?

— Behavior when noise process Is important (or non-
Gaussian)?
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Questions?
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How many principal directions?

Average classification rate
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